share_book
Envoyer cet article par e-mail

La géométrie de la relativité restreinte, niveau L3-M

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
La géométrie de la relativité restreinte, niveau L3-M

La géométrie de la relativité restreinte, niveau L3-M

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "La géométrie de la relativité restreinte, niveau L3-M"

Présentation de La géométrie de la relativité restreinte, niveau L3-M

L'ouvrage s'adresse aux étudiants en physique et en mathématiques. Il montre l'intérêt de la géométrie pour comprendre la relativité restreinte, conséquence de l'invariance des équations de Maxwell et de la constance de la vitesse de la lumière. L'espace-temps se trouve muni d'une structure géométrique et d'une interprétation physique : à tout observateur sont associés son temps propre et son espace physique propre où se déroulent les phénomènes le concernant. On est ainsi conduit à une approche naturelle de la relativité restreinte, en retrouvant les situations usuelles, les précisant et les complétant. Le groupe de Lorentz et son algèbre de Lie sont ensuite étudiés matriciellement, puis par l'algèbre de Pauli. Les quaternions sont abordés en annexe pour leurs applications en géométrie et cinématique. Une étude originale de l'algèbre engendrée par une matrice permet de traiter simplement, de manière cohérente, diverses questions que l'on rencontre souvent dans les ouvrages. La géométrie, dont le rôle est ainsi mis en évidence, devrait être un lien trop souvent distendu entre mathématiques et physique

Détails sur le produit

  • Reliure : Broché
  • 172  pages
  • Dimensions :  1.2cmx16.2cmx23.8cm
  • Poids : 322.1g
  • Editeur :   Ellipses Marketing Paru le
  • Collection : Physique-LMD Universités-Ecoles d'ingénieurs
  • ISBN :  272983902X
  • EAN13 :  9782729839024
  • Classe Dewey :  530.11
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Présentation de La géométrie de la relativité restreinte, niveau L3-M

L'ouvrage s'adresse aux étudiants en physique et en mathématiques. Il montre l'intérêt de la géométrie pour comprendre la relativité restreinte, conséquence de l'invariance des équations de Maxwell et de la constance de la vitesse de la lumière. L'espace-temps se trouve muni d'une structure géométrique et d'une interprétation physique : à tout observateur sont associés son temps propre et son espace physique propre où se déroulent les phénomènes le concernant. On est ainsi conduit à une approche naturelle de la relativité restreinte, en retrouvant les situations usuelles, les précisant et les complétant. Le groupe de Lorentz et son algèbre de Lie sont ensuite étudiés matriciellement, puis par l'algèbre de Pauli. Les quaternions sont abordés en annexe pour leurs applications en géométrie et cinématique. Une étude originale de l'algèbre engendrée par une matrice permet de traiter simplement, de manière cohérente, diverses questions que l'on rencontre souvent dans les ouvrages. La géométrie, dont le rôle est ainsi mis en évidence, devrait être un lien trop souvent distendu entre mathématiques et physique