share_book
Envoyer cet article par e-mail

Epistémologie mathématique

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Epistémologie mathématique

Epistémologie mathématique

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Epistémologie mathématique"

L'épistémologie est la philosophie des sciences. L'épistémologie mathématique a pour but de réfléchir à ce que l'on fait vraiment quand on fait des mathématiques, et d'analyser le rapport entre cette pratique et la pratique des autres sciences. Les mathématiques ont une histoire, et leur histoire est toujours en cours. Aussi cet ouvrage se propose d'éclairer par l'histoire les questions soulevées. Ce cours propose une première étude de quelques questions essentielles. Qu'est-ce qu'un " objet mathématique " : un nombre entier, un nombre réel, une fonction réelle, un espace vectoriel, un espace de fonctions, un objet de nature géométrique ? Qu'est-ce qu'un " énoncé vrai " concernant un objet mathématique ? Quelles méthodes de raisonnement sont-elles vraiment légitimes ? Quelle est la nature de l'infini mathématique ? Qu'est-ce que la méthode formaliste en mathématiques ? Quelles limites le théorème d'incomplétude de Gödel impose-t-il au formalisme ? Ces questions sont abordées sous divers angles : des cours proprement dits ; des analyses de preuve ; des commentaires de textes historiques. Cet ouvrage s'adresse aux étudiants en sciences en fin de licence, et aux enseignants de sciences en lycée ou à l'université. Il ne réclame pas de connaissances mathématiques sophistiquées et propose plutôt de réfléchir sur les activités mathématiques de base, en prenant un peu de recul par rapport à la " vérité révélée " telle qu'elle est usuellement enseignée.

Détails sur le produit

  • Reliure : Broché
  • 216  pages
  • Editeur :   Ellipses Paru le
  • Collection : Références sciences
  • ISBN :  2729870458
  • EAN13 :  9782729870454
  • Classe Dewey :  500
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

L'épistémologie est la philosophie des sciences. L'épistémologie mathématique a pour but de réfléchir à ce que l'on fait vraiment quand on fait des mathématiques, et d'analyser le rapport entre cette pratique et la pratique des autres sciences. Les mathématiques ont une histoire, et leur histoire est toujours en cours. Aussi cet ouvrage se propose d'éclairer par l'histoire les questions soulevées. Ce cours propose une première étude de quelques questions essentielles. Qu'est-ce qu'un " objet mathématique " : un nombre entier, un nombre réel, une fonction réelle, un espace vectoriel, un espace de fonctions, un objet de nature géométrique ? Qu'est-ce qu'un " énoncé vrai " concernant un objet mathématique ? Quelles méthodes de raisonnement sont-elles vraiment légitimes ? Quelle est la nature de l'infini mathématique ? Qu'est-ce que la méthode formaliste en mathématiques ? Quelles limites le théorème d'incomplétude de Gödel impose-t-il au formalisme ? Ces questions sont abordées sous divers angles : des cours proprement dits ; des analyses de preuve ; des commentaires de textes historiques. Cet ouvrage s'adresse aux étudiants en sciences en fin de licence, et aux enseignants de sciences en lycée ou à l'université. Il ne réclame pas de connaissances mathématiques sophistiquées et propose plutôt de réfléchir sur les activités mathématiques de base, en prenant un peu de recul par rapport à la " vérité révélée " telle qu'elle est usuellement enseignée.