share_book
Envoyer cet article par e-mail

Calcul intégral

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Calcul intégral

Calcul intégral

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Calcul intégral"

L'objectif de ce livre, écrit pour les étudiants de troisième année de licence, mais qui conviendra à un public plus large, est l'enseignement de l'analyse : l'intégrale de Lebesgue y est considérée comme un outil, et non comme l'objet principal de l'étude. Les définitions et les techniques fondamentales étant mises en place aussi rapidement que possible, il s'agit d'apprendre à les utiliser. L'auteur observe en même temps que beaucoup de questions d'analyse ne se comprennent bien qu'en " passant dans le complexe ". Si les fonctions analytiques sont souvent enseignées à part, dans toutes les grandes questions d'analyse, techniques de calcul intégral, analyse de Fourier et utilisation de la variable complexe sont en fait étroitement associées. Un chapitre est donc consacré à l'analyse complexe immédiatement après le chapitre qui traite de l'intégration des fonctions continues et avant ceux qui sont consacrés à l'intégrale de Lebesgue (intégration dans R et R", espaces LP, convolution) et aux séries et intégrales de Fourier. La volonté d'enseigner le calcul intégral par son usage se manifeste aussi dans les très belles applications disséminées tout au long de l'ouvrage, et toujours traitées simplement : méthodes de Laplace et de la phase stationnaire, formule sommatoire d'Euler-Moclaurin, méthode du col, fonction d'Airy, aire de la sphère, poussée d'Rrchimède, polynômes de Legendre, quadrature gaussienne, espace de Borgmann..., applications qu'on rencontre rarement dans les cours d'intégration. Le dernier chapitre résume cette approche. On y montre comment avec un peu d'ana-lyse de Fourier et de fonctions analytiques on peut obtenir de magnifiques formules liées à l'équation de la chaleur et aux nombres premiers.

Détails sur le produit

  • Reliure : Broché
  • 474  pages
  • Dimensions :  2.2cmx14.6cmx22.6cm
  • Poids : 762.0g
  • Editeur :   Cassini Paru le
  • Collection : Enseignement des Mathématiques
  • ISBN :  2842250532
  • EAN13 :  9782842250539
  • Classe Dewey :  510
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

L'objectif de ce livre, écrit pour les étudiants de troisième année de licence, mais qui conviendra à un public plus large, est l'enseignement de l'analyse : l'intégrale de Lebesgue y est considérée comme un outil, et non comme l'objet principal de l'étude. Les définitions et les techniques fondamentales étant mises en place aussi rapidement que possible, il s'agit d'apprendre à les utiliser. L'auteur observe en même temps que beaucoup de questions d'analyse ne se comprennent bien qu'en " passant dans le complexe ". Si les fonctions analytiques sont souvent enseignées à part, dans toutes les grandes questions d'analyse, techniques de calcul intégral, analyse de Fourier et utilisation de la variable complexe sont en fait étroitement associées. Un chapitre est donc consacré à l'analyse complexe immédiatement après le chapitre qui traite de l'intégration des fonctions continues et avant ceux qui sont consacrés à l'intégrale de Lebesgue (intégration dans R et R", espaces LP, convolution) et aux séries et intégrales de Fourier. La volonté d'enseigner le calcul intégral par son usage se manifeste aussi dans les très belles applications disséminées tout au long de l'ouvrage, et toujours traitées simplement : méthodes de Laplace et de la phase stationnaire, formule sommatoire d'Euler-Moclaurin, méthode du col, fonction d'Airy, aire de la sphère, poussée d'Rrchimède, polynômes de Legendre, quadrature gaussienne, espace de Borgmann..., applications qu'on rencontre rarement dans les cours d'intégration. Le dernier chapitre résume cette approche. On y montre comment avec un peu d'ana-lyse de Fourier et de fonctions analytiques on peut obtenir de magnifiques formules liées à l'équation de la chaleur et aux nombres premiers.