share_book
Envoyer cet article par e-mail

Analyse numérique et équations différentielles

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Analyse numérique et équations différentielles

Analyse numérique et équations différentielles

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Analyse numérique et équations différentielles"

Cet ouvrage est un cours d'introduction à la théorie des équations différentielles ordinaires, accompagné d'un exposé détaillé de différentes méthodes numériques permettant de les résoudre en pratique. La première partie présente quelques techniques importantes de l'analyse numérique : interpolation polynomiale, méthodes d'intégration numérique, méthodes itératives pour la résolution d'équations. Suit un exposé rigoureux des résultats de base sur l'existence, l'unicité et la régularité des solutions des équations différentielles, incluant une étude détaillée des équations usuelles du premier et du second ordre, des équations et systèmes différentiels linéaires, de la stabilité des solutions et leur dépendance par rapport aux paramètres. Une place substantielle est accordée à la description des méthodes numériques à un pas ou multi-pas, avec une étude comparative de la stabilité et du coût en temps de calcul. Agrémenté de nombreux exemples concrets, le texte propose des exercices et des problèmes d'application à la fin de chaque chapitre. Cette troisième édition a été enrichie de nouveaux exemples et exercices et de compléments théoriques et pratiques : comportement des suites itératives, théorème des fonctions implicites et ses conséquences géométriques, critère de maximalité des solutions d'équations différentielles, calcul des géodésiques d'une surface, flots de champ de vecteurs... Cet ouvrage est surtout destiné aux étudiants (licence (L3), masters scientifiques, écoles d'ingénieurs, agrégatifs de mathématiques). Les enseignants, professionnels (physiciens, mécaniciens...) l'utiliseront comme outil de base.

Détails sur le produit

  • Reliure : Broché
  • 343  pages
  • Dimensions :  1.8cmx17.0cmx24.0cm
  • Poids : 680.4g
  • Editeur :   Edp Sciences Paru le
  • Collection : Grenoble sciences
  • ISBN :  286883891X
  • EAN13 :  9782868838919
  • Classe Dewey :  519.4
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Cet ouvrage est un cours d'introduction à la théorie des équations différentielles ordinaires, accompagné d'un exposé détaillé de différentes méthodes numériques permettant de les résoudre en pratique. La première partie présente quelques techniques importantes de l'analyse numérique : interpolation polynomiale, méthodes d'intégration numérique, méthodes itératives pour la résolution d'équations. Suit un exposé rigoureux des résultats de base sur l'existence, l'unicité et la régularité des solutions des équations différentielles, incluant une étude détaillée des équations usuelles du premier et du second ordre, des équations et systèmes différentiels linéaires, de la stabilité des solutions et leur dépendance par rapport aux paramètres. Une place substantielle est accordée à la description des méthodes numériques à un pas ou multi-pas, avec une étude comparative de la stabilité et du coût en temps de calcul. Agrémenté de nombreux exemples concrets, le texte propose des exercices et des problèmes d'application à la fin de chaque chapitre. Cette troisième édition a été enrichie de nouveaux exemples et exercices et de compléments théoriques et pratiques : comportement des suites itératives, théorème des fonctions implicites et ses conséquences géométriques, critère de maximalité des solutions d'équations différentielles, calcul des géodésiques d'une surface, flots de champ de vecteurs... Cet ouvrage est surtout destiné aux étudiants (licence (L3), masters scientifiques, écoles d'ingénieurs, agrégatifs de mathématiques). Les enseignants, professionnels (physiciens, mécaniciens...) l'utiliseront comme outil de base.