share_book
Envoyer cet article par e-mail

Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique

Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique

  (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Analyse numérique et optimisation : Une introduction à la modélisation..."

Ce livre est issu d'un cours enseigné à l'École Polytechnique dont l'objectif, au delà de la présentation de l'analyse numérique et de l'optimisation, est d'introduire les étudiants au monde de la modélisation mathématique et de la simulation numérique. La modélisation et la simulation ont pris une importance considérable ces dernières décennies dans tous les domaines de la science et des applications industrielles (ou sciences de l'ingénieur). En effet, depuis leur apparition au lendemain de la seconde guerre mondiale les ordinateurs ont profondément transformé les mathématiques en en faisant une science expérimentale : on fait des " expériences numériques " (des calculs sur ordinateurs) comme d'autres font des expériences physiques. L'analyse numérique est justement la discipline qui conçoit et analyse les méthodes ou algorithmes de calcul. La simulation numérique permet aux mathématiciens de s'attaquer à des problèmes beaucoup plus complexes et concrets qu'auparavant, issus de motivations immédiates industrielles ou scientifiques, auxquels on peut apporter des réponses à la fois qualitatives mais aussi quantitatives : c'est la modélisation mathématique. Remarquons qu'à coté des champs d'applications traditionnels que sont la chimie, le mécanique et la physique se sont ouverts de nouvelles perspectives en biologie, environnement, finance, médecine et sciences sociales. Par ailleurs, l'ingénieur ou le scientifique qui a réussi à simuler numériquement son problème ne s'arrête pas en si bon chemin : il veut ensuite pouvoir intervenir sur certains paramètres pour améliorer ou optimiser le fonctionnement, le rendement, ou la réponse d'un système en maximisant (ou minimisant) des fonctions associées. C'est précisément le but de l'optimisation qui fournit des outils théoriques ou numériques pour ce faire. L'analyse numérique et l'optimisation sont donc deux outils essentiels et complémentaires de la modélisation mathématique. Des travaux pratiques de simulation numérique à l'aide des logiciels Scilab et FreeFem ++ accompagnent cet ouvrage et sont disponibles sur le site web http://www.cmap.polytechnique.fr/-allaire. Ce livre s'adresse en premier lieu aux étudiants des grandes écoles d'ingénieurs et des universités scientifiques en fin de licence ou première année de masters. Il peut par ailleurs permettre à des ingénieurs ou des chercheurs d'autres disciplines de se familiariser avec l'analyse numérique et l'optimisation.

Détails sur le produit

  • Reliure : Broché
  • 459  pages
  • Dimensions :  2.8cmx17.0cmx23.6cm
  • Poids : 839.1g
  • Editeur :   Ecole Polytechnique Paru le
  • Collection : DIFFUSION ECOLE
  • ISBN :  2730212558
  • EAN13 :  9782730212557
  • Classe Dewey :  511.8
  • Langue : Français

D'autres livres de Grégoire Allaire

Introduction à Scilab

L'enseignement des mathématiques appliquées et de l'analyse numérique utilise de plus en plus une approche expérimentale à travers des exemples de calcul sur ordinateurs. Ceci ne fait que refléter la part grandissante de la simulation numérique dans tous les domaines de la science : physique,...

Prix : 264 DH
Algèbre linéaire numérique : Cours et exercices

Collection dirigée par Charles-Michel Marle et Philippe Pilibossian. Cette collection se propose de mettre à la disposition des étudiants de licence et de maîtrise de mathématiques des ouvrages couvrant l'essentiel des programmes actuels des universités françaises. Certains de ces ouvrages po...

Voir tous les livres de Grégoire Allaire

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Ce livre est issu d'un cours enseigné à l'École Polytechnique dont l'objectif, au delà de la présentation de l'analyse numérique et de l'optimisation, est d'introduire les étudiants au monde de la modélisation mathématique et de la simulation numérique. La modélisation et la simulation ont pris une importance considérable ces dernières décennies dans tous les domaines de la science et des applications industrielles (ou sciences de l'ingénieur). En effet, depuis leur apparition au lendemain de la seconde guerre mondiale les ordinateurs ont profondément transformé les mathématiques en en faisant une science expérimentale : on fait des " expériences numériques " (des calculs sur ordinateurs) comme d'autres font des expériences physiques. L'analyse numérique est justement la discipline qui conçoit et analyse les méthodes ou algorithmes de calcul. La simulation numérique permet aux mathématiciens de s'attaquer à des problèmes beaucoup plus complexes et concrets qu'auparavant, issus de motivations immédiates industrielles ou scientifiques, auxquels on peut apporter des réponses à la fois qualitatives mais aussi quantitatives : c'est la modélisation mathématique. Remarquons qu'à coté des champs d'applications traditionnels que sont la chimie, le mécanique et la physique se sont ouverts de nouvelles perspectives en biologie, environnement, finance, médecine et sciences sociales. Par ailleurs, l'ingénieur ou le scientifique qui a réussi à simuler numériquement son problème ne s'arrête pas en si bon chemin : il veut ensuite pouvoir intervenir sur certains paramètres pour améliorer ou optimiser le fonctionnement, le rendement, ou la réponse d'un système en maximisant (ou minimisant) des fonctions associées. C'est précisément le but de l'optimisation qui fournit des outils théoriques ou numériques pour ce faire. L'analyse numérique et l'optimisation sont donc deux outils essentiels et complémentaires de la modélisation mathématique. Des travaux pratiques de simulation numérique à l'aide des logiciels Scilab et FreeFem ++ accompagnent cet ouvrage et sont disponibles sur le site web http://www.cmap.polytechnique.fr/-allaire. Ce livre s'adresse en premier lieu aux étudiants des grandes écoles d'ingénieurs et des universités scientifiques en fin de licence ou première année de masters. Il peut par ailleurs permettre à des ingénieurs ou des chercheurs d'autres disciplines de se familiariser avec l'analyse numérique et l'optimisation.