share_book
Envoyer cet article par e-mail

Introduction à la théorie des nombres

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Introduction à la théorie des nombres

Introduction à la théorie des nombres

  (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Introduction à la théorie des nombres"

Voici la première traduction en langue française d'un très grand classique des mathématiques, oeuvre de deux mathématiciens britanniques qui ont enseigné à Oxford, à Cambridge, à Aberdeen et dans d'autres prestigieuses universités. Publié pour la première fois en 1938, ce livre fondateur a sans cesse été réédité, indépendamment des radicales réorganisations du domaine de la théorie des nombres au cours du XXe siècle. Le texte est celui de la cinquième et dernière édition publiée par Oxford University Press en 1979, continuellement réimprimée depuis. Partisans de l'élémentaire et de la variété, les auteurs offrent ici ce qui se présente comme une série d'introductions : répartition des nombres premiers, problèmes d'irrationalité et de transcendance, congruences, représentation des entiers comme sommes de puissances, corps quadratiques, géométrie des nombres. La première qualité de l'ouvrage réside dans l'originalité du choix autant que dans le traitement des sujets. On sera saisi par la foule de théorèmes, discutés et démontrés en quelques pages, dont la variété rend hommage aux nombreuses facettes de cette théorie et à la multiplicité de ses applications. On trouvera aussi des sections consacrées par exemple aux sommes de Gauss et à leurs variantes, aux partitions et aux identités formelles ou encore aux tests de primalité, question restée longtemps marginale mais que la théorie du codage a remis récemment au premier plan de la recherche. Cette traduction comprend notamment un index très détaillé ainsi qu'une bibliographie autonome. Très sensible à la démarche des auteurs, le traducteur - enseignant-chercheur spécialiste de la théorie des nombres - s'est attaché à restituer leur style. Il a complété les entrées bibliographiques et, suivant la suggestion du texte, ajouté une figure nouvelle. Tous ceux qui aiment les mathématiques trouveront ici - bien mieux qu'un manuel ou un traité, ce qu'il n'est pas - un livre de vraies mathématiques en action, chose rarissime.

Détails sur le produit

  • Reliure : Broché
  • 568  pages
  • Dimensions :  3.6cmx16.6cmx24.0cm
  • Poids : 1038.7g
  • Editeur :   Vuibert Paru le
  • ISBN :  2711771687
  • EAN13 :  9782711771684
  • Classe Dewey :  512.7
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Voici la première traduction en langue française d'un très grand classique des mathématiques, oeuvre de deux mathématiciens britanniques qui ont enseigné à Oxford, à Cambridge, à Aberdeen et dans d'autres prestigieuses universités. Publié pour la première fois en 1938, ce livre fondateur a sans cesse été réédité, indépendamment des radicales réorganisations du domaine de la théorie des nombres au cours du XXe siècle. Le texte est celui de la cinquième et dernière édition publiée par Oxford University Press en 1979, continuellement réimprimée depuis. Partisans de l'élémentaire et de la variété, les auteurs offrent ici ce qui se présente comme une série d'introductions : répartition des nombres premiers, problèmes d'irrationalité et de transcendance, congruences, représentation des entiers comme sommes de puissances, corps quadratiques, géométrie des nombres. La première qualité de l'ouvrage réside dans l'originalité du choix autant que dans le traitement des sujets. On sera saisi par la foule de théorèmes, discutés et démontrés en quelques pages, dont la variété rend hommage aux nombreuses facettes de cette théorie et à la multiplicité de ses applications. On trouvera aussi des sections consacrées par exemple aux sommes de Gauss et à leurs variantes, aux partitions et aux identités formelles ou encore aux tests de primalité, question restée longtemps marginale mais que la théorie du codage a remis récemment au premier plan de la recherche. Cette traduction comprend notamment un index très détaillé ainsi qu'une bibliographie autonome. Très sensible à la démarche des auteurs, le traducteur - enseignant-chercheur spécialiste de la théorie des nombres - s'est attaché à restituer leur style. Il a complété les entrées bibliographiques et, suivant la suggestion du texte, ajouté une figure nouvelle. Tous ceux qui aiment les mathématiques trouveront ici - bien mieux qu'un manuel ou un traité, ce qu'il n'est pas - un livre de vraies mathématiques en action, chose rarissime.