share_book
Envoyer cet article par e-mail

Calcul différentiel - Cours et exercices corrigés - 2ème édition

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Calcul différentiel - Cours et exercices corrigés - 2ème édition

Calcul différentiel - Cours et exercices corrigés - 2ème édition

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Calcul différentiel - Cours et exercices corrigés - 2ème édition"

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit sa spécialité, doit en posséder les rudiments. Même les spécialistes de mathématiques discrètes ne peuvent s en passer, car l on ne peut bien explorer, bien appréhender le discret que si l on connaît un peu mieux le continu, avec les nombreux et ingénieux outils mathématiques qui y ont été développés au cours du temps, que si l on a une idée des limites et restrictions de ces outils et des possibilités éventuelles de leur adaptation ou de s en inspirer face à des situations discrètes. Destiné à l usage aussi bien des étudiants en licence de mathématiques que des enseignants, cet ouvrage débute par un rappel des pré-requis topologiques nécessaires pour aborder les notions exposées dans la suite. L auteur a voulu ce rappel sur les espaces vectoriels normés le plus détaillé et le plus complet possible pour permettre à l utilisateur de faire le point de ces notions sans trop d effort et sans perdre du temps à les rechercher dans les livres de topologie. L approche pédagogique utilisée permet au lecteur de cerner assez rapidement et dans tous leurs contours les concepts exposés et de comprendre dès le début l architecture des démonstrations des théorèmes et propositions. Outre les chapitres classiques généralement traités dans les livres de calcul différentiel, un chapitre sur les fonctions convexes différentiables attirera l attention du lecteur sur les propriétés intéressantes qui découlent du couplage de ces deux notions ; quant au chapitre sur les théorèmes du rang, il fait ressortir l importance et les conditions de linéarisation d une application au voisinage d un point. TABLE DES MATIERES Préface 1 RAPPELS SUR LES ESPACES DE BANACH 2 APPLICATIONS DIFFERENTIABLES 3 THEOREME DES ACCROISSEMENTS FINIS 4 INVERSIONS LOCALES ET FONCTIONS IM-PLICITES 5 THEOREMES DU RANG 6 DIFFERENTIELLES D ORDRE SUPERIEUR 7 FONCTIONS CONVEXES DIFFERENTIABLES183 8 INTEGRATION DES FONCTIONS REGLEES 193 9 FORMULES DE TAYLOR 10 EXTREMA RELATIFS D UNE FONCTION 235 11 SOUS-VARIETES DE Rn 12 EQUATIONS DIFFERENTIELLES 13 FORMES DIFFERENTIELLES

Détails sur le produit

  • Reliure : Broché
  • 400  pages
  • Dimensions :  2.2cmx14.6cmx20.2cm
  • Poids : 458.1g
  • Editeur :   Cépaduès éditions Paru le
  • ISBN :  2854289129
  • EAN13 :  9782854289121
  • Classe Dewey :  515.33
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Le calcul différentiel est un outil dont tout mathématicien, quelle que soit sa spécialité, doit en posséder les rudiments. Même les spécialistes de mathématiques discrètes ne peuvent s en passer, car l on ne peut bien explorer, bien appréhender le discret que si l on connaît un peu mieux le continu, avec les nombreux et ingénieux outils mathématiques qui y ont été développés au cours du temps, que si l on a une idée des limites et restrictions de ces outils et des possibilités éventuelles de leur adaptation ou de s en inspirer face à des situations discrètes. Destiné à l usage aussi bien des étudiants en licence de mathématiques que des enseignants, cet ouvrage débute par un rappel des pré-requis topologiques nécessaires pour aborder les notions exposées dans la suite. L auteur a voulu ce rappel sur les espaces vectoriels normés le plus détaillé et le plus complet possible pour permettre à l utilisateur de faire le point de ces notions sans trop d effort et sans perdre du temps à les rechercher dans les livres de topologie. L approche pédagogique utilisée permet au lecteur de cerner assez rapidement et dans tous leurs contours les concepts exposés et de comprendre dès le début l architecture des démonstrations des théorèmes et propositions. Outre les chapitres classiques généralement traités dans les livres de calcul différentiel, un chapitre sur les fonctions convexes différentiables attirera l attention du lecteur sur les propriétés intéressantes qui découlent du couplage de ces deux notions ; quant au chapitre sur les théorèmes du rang, il fait ressortir l importance et les conditions de linéarisation d une application au voisinage d un point. TABLE DES MATIERES Préface 1 RAPPELS SUR LES ESPACES DE BANACH 2 APPLICATIONS DIFFERENTIABLES 3 THEOREME DES ACCROISSEMENTS FINIS 4 INVERSIONS LOCALES ET FONCTIONS IM-PLICITES 5 THEOREMES DU RANG 6 DIFFERENTIELLES D ORDRE SUPERIEUR 7 FONCTIONS CONVEXES DIFFERENTIABLES183 8 INTEGRATION DES FONCTIONS REGLEES 193 9 FORMULES DE TAYLOR 10 EXTREMA RELATIFS D UNE FONCTION 235 11 SOUS-VARIETES DE Rn 12 EQUATIONS DIFFERENTIELLES 13 FORMES DIFFERENTIELLES