share_book
Envoyer cet article par e-mail

Intégrale de chemin en mécanique quantique : Introduction

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Intégrale de chemin en mécanique quantique : Introduction

Intégrale de chemin en mécanique quantique : Introduction

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Intégrale de chemin en mécanique quantique : Introduction"

Le but principal de cet ouvrage est de familiariser le lecteur avec un outil, l'intégrale de chemin, qui offre un point de vue alternatif sur la mécanique quantique, mais surtout qui, sous une forme généralisée, est devenu essentiel à une compréhension profonde de la théorie quantique des champs et de ses applications, qui vont de la physique des interactions fondamentales, à la mécanique statistique des transitions de phase, ou aux propriétés des gaz quantiques. L'intégrale de chemin est un outil puissant pour l'étude de la quantique mécanique, car elle met en correspondance de façon très explicite les mécaniques classique et quantique. Ainsi l'intégrale de chemin permet-elle une compréhension intuitive et un calcul simple des effets semi-classiques tant du point de vue de la diffusion que des propriétés spectrales ou de l'effet tunnel. La formulation de la mécanique quantique basée sur l'intégrale de chemin, si elle peut paraître plus compliquée du point de vue mathématique, puisqu'elle se substitue à un formalisme d'équations aux dérivées partielles, est bien adaptée à l'étude de systèmes à un nombre grand de degrés de liberté où un formalisme de type équation de Schrödinger est beaucoup moins utile. Beaucoup des sujets et méthodes de calcul présentés dans cet ouvrage ont donc été choisis parce qu'ils avaient une généralisation simple à la théorie quantique des champs ou à la mécanique statistique, même s'ils ne sont étudiés que dans le cadre de la mécanique quantique à un petit nombre de particules

Détails sur le produit

  • Reliure : Broché
  • 296  pages
  • Dimensions :  2.0cmx15.4cmx23.0cm
  • Poids : 580.6g
  • Editeur :   Edp Sciences Paru le
  • Collection : Savoirs actuels
  • ISBN :  2868836607
  • EAN13 :  9782868836601
  • Classe Dewey :  530.12
  • Langue : Français

D'autres livres de Jean Zinn-Justin

Transition de phase et groupe de renormalisation

Le but de cet ouvrage est de familiariser le lecteur avec un concept, le groupe de renormalisation, qui fournit des outils essentiels pour la compréhension de phénomènes physiques aussi différents que la faiblesse de l'interaction entre quarks à très haute énergie en physique des [....]...

Voir tous les livres de Jean Zinn-Justin

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Le but principal de cet ouvrage est de familiariser le lecteur avec un outil, l'intégrale de chemin, qui offre un point de vue alternatif sur la mécanique quantique, mais surtout qui, sous une forme généralisée, est devenu essentiel à une compréhension profonde de la théorie quantique des champs et de ses applications, qui vont de la physique des interactions fondamentales, à la mécanique statistique des transitions de phase, ou aux propriétés des gaz quantiques. L'intégrale de chemin est un outil puissant pour l'étude de la quantique mécanique, car elle met en correspondance de façon très explicite les mécaniques classique et quantique. Ainsi l'intégrale de chemin permet-elle une compréhension intuitive et un calcul simple des effets semi-classiques tant du point de vue de la diffusion que des propriétés spectrales ou de l'effet tunnel. La formulation de la mécanique quantique basée sur l'intégrale de chemin, si elle peut paraître plus compliquée du point de vue mathématique, puisqu'elle se substitue à un formalisme d'équations aux dérivées partielles, est bien adaptée à l'étude de systèmes à un nombre grand de degrés de liberté où un formalisme de type équation de Schrödinger est beaucoup moins utile. Beaucoup des sujets et méthodes de calcul présentés dans cet ouvrage ont donc été choisis parce qu'ils avaient une généralisation simple à la théorie quantique des champs ou à la mécanique statistique, même s'ils ne sont étudiés que dans le cadre de la mécanique quantique à un petit nombre de particules