share_book
Envoyer cet article par e-mail

Théorie de Morse et homologie de Floer

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Théorie de Morse et homologie de Floer

Théorie de Morse et homologie de Floer

  (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Théorie de Morse et homologie de Floer"

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la " conjecture d'Arnold ", qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la " théorie de Morse ", outil indispensable de la topologie différentielle contemporaine. Elle introduit le " complexe de Morse " et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l'" homologie de Floer ", qui en est un analogue en dimension infinie. Les objets de l'étude sont alors plus compliqués et nécessitent l'introduction de méthodes d'analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l'ouvrage contient en appendice la présentation d'un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés - géométrie différentielle, topologie algébrique et analyse - auxquels le lecteur pourra se référer si besoin. L'ouvrage est issu d'un cours de M2 donné à l'université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.

Détails sur le produit

  • Reliure : Broché
  • 548  pages
  • Dimensions :  3.4cmx15.0cmx22.2cm
  • Poids : 821.0g
  • Editeur :   Edp Sciences Paru le
  • Collection : Savoirs actuels
  • ISBN :  2759805182
  • EAN13 :  9782759805181
  • Classe Dewey :  514.72
  • Langue : Français

D'autres livres de Michèle Audin

Géométrie

Ce livre est destiné aux étudiants de Licence ou Master de Mathématiques (L3-M1) et à ceux qui préparent le CAPES ou l'agrégation. Il traite de géométrie affine, euclidienne, projective, de coniques et quadriques, de géométrie différentielle des courbes et des surfaces. Il contient un exp...

Souvenirs sur Sofia Kovalevskaya

Lorsqu'elle meurt à Stockholm en 1891, Sofia Kovalevskaya n'a que 41 ans. Elle a pourtant eu une vie d'une rare intensité. Ses études, puis sa carrière scientifique, l'auront conduite, de Moscou à Berlin, Paris ou Stockholm, à travers l'Europe. Elle aura soutenu une thèse de mathématiques, ...

Voir tous les livres de Michèle Audin

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la " conjecture d'Arnold ", qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique dans laquelle évolue ce système. La première partie expose la " théorie de Morse ", outil indispensable de la topologie différentielle contemporaine. Elle introduit le " complexe de Morse " et aboutit aux inégalités de Morse. Cette théorie, maintenant classique, est présentée de manière détaillée car elle sert de guide pour la seconde partie, consacrée à l'" homologie de Floer ", qui en est un analogue en dimension infinie. Les objets de l'étude sont alors plus compliqués et nécessitent l'introduction de méthodes d'analyse plus sophistiquées. Elles sont expliquées en détail dans cette partie. Enfin, l'ouvrage contient en appendice la présentation d'un certain nombre de résultats nécessaires à la lecture du livre dans les trois principaux domaines abordés - géométrie différentielle, topologie algébrique et analyse - auxquels le lecteur pourra se référer si besoin. L'ouvrage est issu d'un cours de M2 donné à l'université de Strasbourg. Le texte, abondamment illustré, contient de nombreux exercices.