share_book
Envoyer cet article par e-mail

Analyse de Fourier dans les espaces fonctionnels, niveau M1

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Analyse de Fourier dans les espaces fonctionnels, niveau M1

Analyse de Fourier dans les espaces fonctionnels, niveau M1

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Analyse de Fourier dans les espaces fonctionnels, niveau M1"

Par la richesse de ses techniques et la grande variété de ses applications, l'Analyse de Fourier est un outil fondamental tarit pour les mathématiques que pour la physique et les sciences de l'ingénieur. Parmi ses applications récentes se distinguent notamment le traitement du signal, la mécanique quantique ou encore les neurosciences. Le contenu de ce livre s'articule autour des thèmes fondamentaux suivants : espaces de Hilbert, produit de convolution, transformation de Fourier et séries de Fourier. Il s'agit d'un cours complet avec démonstrations détaillées et de nombreux exemples d'applications issus d'horizons très divers. Le lecteur trouvera également un chapitre spécial entièrement consacré à des exercices et problèmes de révision et de synthèse complétant et approfondissant les exercices de compréhension qui émaillent le cours. Il trouvera également cieux annexes, une première l'invitant à la découverte de prolongements très naturels de divers concepts et résultats du cours, avec notamment une étude détaillée des transformations de Laplace, Mellin et Hankel, ainsi qu'une introduction à la transformation de Fourier sur les groupes abéliens finis. Une seconde annexe regroupe les rappels utiles pour un accès rapide et efficace au contenu de l'ouvrage. Pour chaque exercice, le lecteur dispose d'indications lui permettant de surmonter d'éventuelles difficultés puis d'une solution complète. Enfin, ce livre est pourvu d'un index détaillé permettant une approche adaptée aux besoins de chaque lecteur. Le présent ouvrage s'adresse principalement aux étudiants de niveau Master 1, aux candidats à l'Agrégation et aux professeurs des classes préparatoires. Il est également conçu de manière à être accessible, pour une large part, à un public scientifique généraliste de niveau bac +3, et peut être utilisé avec profit par les candidats au CAPES ainsi que par les élèves ingénieurs.

Détails sur le produit

  • Reliure : Broché
  • 438  pages
  • Dimensions :  2.6cmx17.4cmx26.0cm
  • Poids : 839.1g
  • Editeur :   Ellipses Marketing Paru le
  • Collection : Mathématiques à l'Université
  • ISBN :  2729839038
  • EAN13 :  9782729839031
  • Classe Dewey :  510
  • Langue : Français

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Par la richesse de ses techniques et la grande variété de ses applications, l'Analyse de Fourier est un outil fondamental tarit pour les mathématiques que pour la physique et les sciences de l'ingénieur. Parmi ses applications récentes se distinguent notamment le traitement du signal, la mécanique quantique ou encore les neurosciences. Le contenu de ce livre s'articule autour des thèmes fondamentaux suivants : espaces de Hilbert, produit de convolution, transformation de Fourier et séries de Fourier. Il s'agit d'un cours complet avec démonstrations détaillées et de nombreux exemples d'applications issus d'horizons très divers. Le lecteur trouvera également un chapitre spécial entièrement consacré à des exercices et problèmes de révision et de synthèse complétant et approfondissant les exercices de compréhension qui émaillent le cours. Il trouvera également cieux annexes, une première l'invitant à la découverte de prolongements très naturels de divers concepts et résultats du cours, avec notamment une étude détaillée des transformations de Laplace, Mellin et Hankel, ainsi qu'une introduction à la transformation de Fourier sur les groupes abéliens finis. Une seconde annexe regroupe les rappels utiles pour un accès rapide et efficace au contenu de l'ouvrage. Pour chaque exercice, le lecteur dispose d'indications lui permettant de surmonter d'éventuelles difficultés puis d'une solution complète. Enfin, ce livre est pourvu d'un index détaillé permettant une approche adaptée aux besoins de chaque lecteur. Le présent ouvrage s'adresse principalement aux étudiants de niveau Master 1, aux candidats à l'Agrégation et aux professeurs des classes préparatoires. Il est également conçu de manière à être accessible, pour une large part, à un public scientifique généraliste de niveau bac +3, et peut être utilisé avec profit par les candidats au CAPES ainsi que par les élèves ingénieurs.