share_book
Envoyer cet article par e-mail

Merveilleux nombres premiers

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Merveilleux nombres premiers

Merveilleux nombres premiers

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Merveilleux nombres premiers"

Rappelez-vous vos souvenirs de mathématiques : un nombre premier est un nombre qui n'admet aucun autre diviseur que lui... et pour commencer le nombre 1. Exemples : 2, 3, 5, 7, 11, 13, 19, etc. Combien y en a-t-il ? Sans doute une infinité. Comment peut-on les trouver ? Divers algorithmes sont employés depuis trois siècles et l'on en est actuellement à chercher (par ordinateur interposé) des nombres premiers de 10 millions de chiffres décimaux. Mise à prix : 100 000 $ ! Autant dire que la formule générale permettant d'obtenir tous les nombres premiers n'a pas été trouvée, ce qui est heureux pour les spécialistes du cryptage informatique et des codes secrets : la plupart des systèmes de cryptographie reposent aujourd'hui sur l'usage des nombres premiers, et sur le fait qu'il n'existe aucun ordre décelable dans leur suite... ce qui reste encore à démontrer et suggère aux mathématiciens des réflexions de ce genre : "En observant les nombres premiers, on éprouve le sentiment d'être en présence d'un des plus inexplicables secrets de la création." --Arthur Hennessy

Détails sur le produit

  • Reliure : Broché
  • 336  pages
  • Dimensions :  1.8cmx18.2cmx23.8cm
  • Poids : 1020.6g
  • Editeur :   Pour La Science Paru le
  • Collection : Bibliothèque scientifique
  • ISBN :  2842450175
  • EAN13 :  9782842450175
  • Classe Dewey :  512.723
  • Langue : Français

D'autres livres de Jean-Paul Delahaye

Le collège unique, pour quoi faire ?

Dans l'esprit de ses promoteurs, le collège unique répondait à un double objectif : élever le niveau de culture et de formation de l'ensemble des jeunes durant leur période de scolarité obligatoire pour répondre aux besoins du pays ; favoriser la mixité sociale pour préparer les futurs [...

Jeux finis et infinis

Les mathématiques gouvernent aussi bien les jeux classiques, comme les dames ou le jeu de Nim, que des divertissements plus sophistiqués, tels les livres sans fin à la Borges, les pavages géométriques, ou encore les transformations d'images infographiques. Autant d'activités ludiques, mais ...

Complexité aléatoire et complexité organisée

On entend souvent dire aujourd'hui que la complexité est devenue un problème fondamental de la science contemporaine, car toutes les disciplines y sont confrontées, et cela sous une multitude de formes. Avant de pouvoir confirmer une telle affirmation, une série de questions se posent : Qu [....

Voir tous les livres de Jean-Paul Delahaye

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Rappelez-vous vos souvenirs de mathématiques : un nombre premier est un nombre qui n'admet aucun autre diviseur que lui... et pour commencer le nombre 1. Exemples : 2, 3, 5, 7, 11, 13, 19, etc. Combien y en a-t-il ? Sans doute une infinité. Comment peut-on les trouver ? Divers algorithmes sont employés depuis trois siècles et l'on en est actuellement à chercher (par ordinateur interposé) des nombres premiers de 10 millions de chiffres décimaux. Mise à prix : 100 000 $ ! Autant dire que la formule générale permettant d'obtenir tous les nombres premiers n'a pas été trouvée, ce qui est heureux pour les spécialistes du cryptage informatique et des codes secrets : la plupart des systèmes de cryptographie reposent aujourd'hui sur l'usage des nombres premiers, et sur le fait qu'il n'existe aucun ordre décelable dans leur suite... ce qui reste encore à démontrer et suggère aux mathématiciens des réflexions de ce genre : "En observant les nombres premiers, on éprouve le sentiment d'être en présence d'un des plus inexplicables secrets de la création." --Arthur Hennessy