share_book
Envoyer cet article par e-mail

Réseaux bayésiens

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Réseaux bayésiens

Réseaux bayésiens

  (Auteur),   (Auteur),   (Auteur),   (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Réseaux bayésiens"

Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes. Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des connaissances utiles à la prise de décision, contrôler ou prévoir le comportement d'un système, diagnostiquer les causes d'un phénomène, etc. Les réseaux bayésiens sont utilisés dans de nombreux domaines : santé (diagnostic, localisation de gènes), industrie (contrôle d'automates ou de robots), informatique et réseaux (agents intelligents), marketing (data mining, gestion de la relation client), banque et finances (scoring, analyse financière), management (aide à la décision, knowledge management, gestion du risque), etc. Fondements théoriques, méthodologie de mise en oeuvre, exemples d'application et panorama des outils. Après une première partie de présentation " intuitive " des réseaux bayésiens accompagnée d'exercices, la deuxième partie du livre en expose les fondements théoriques, avec une étude détaillée des algorithmes les plus importants. Résolument pratique, la troisième partie de l'ouvrage propose une méthodologie de mise en oeuvre, un panorama des domaines d'application, trois études de cas détaillées, ainsi qu'une présentation des principaux logiciels de modélisation de réseaux bayésiens (Bayes Net Toolbox, BayesiaLab, Hugin et Netica). À qui s'adresse l'ouvrage ? Aux ingénieurs, informaticiens, industriels, biologistes, économistes confrontés à des problèmes d'analyse de données, d'aide a la décision, de gestion des connaissances, de diagnostic ou de contrôle de systèmes. Aux étudiants en mathématiques appliquées, algorithmique, économie, recherche opérationnelle, gestion de production, automatique.

Détails sur le produit

  • Reliure : Broché
  • 298  pages
  • Dimensions :  1.8cmx17.0cmx22.2cm
  • Poids : 557.9g
  • Editeur :   Eyrolles Paru le
  • Collection : Algorithmes
  • ISBN :  2212111371
  • EAN13 :  9782212111378
  • Langue : Français

D'autres livres de Patrick Naïm

Data Mining pour le web

* La personnalisation : une approche devenue incontournable II y a peu, les sites Web pouvaient être classés en deux grandes familles : les sites statiques et les sites dynamiques. Dorénavant, il est plus pertinent de distinguer les sites avec personnalisation des sites qui n'en ont pas encore. L...

Prix : 483.75 DH
Réseaux bayésiens

Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes : Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des [....]...

Prix : 562.5 DH

Voir tous les livres de Patrick Naïm

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes. Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des connaissances utiles à la prise de décision, contrôler ou prévoir le comportement d'un système, diagnostiquer les causes d'un phénomène, etc. Les réseaux bayésiens sont utilisés dans de nombreux domaines : santé (diagnostic, localisation de gènes), industrie (contrôle d'automates ou de robots), informatique et réseaux (agents intelligents), marketing (data mining, gestion de la relation client), banque et finances (scoring, analyse financière), management (aide à la décision, knowledge management, gestion du risque), etc. Fondements théoriques, méthodologie de mise en oeuvre, exemples d'application et panorama des outils. Après une première partie de présentation " intuitive " des réseaux bayésiens accompagnée d'exercices, la deuxième partie du livre en expose les fondements théoriques, avec une étude détaillée des algorithmes les plus importants. Résolument pratique, la troisième partie de l'ouvrage propose une méthodologie de mise en oeuvre, un panorama des domaines d'application, trois études de cas détaillées, ainsi qu'une présentation des principaux logiciels de modélisation de réseaux bayésiens (Bayes Net Toolbox, BayesiaLab, Hugin et Netica). À qui s'adresse l'ouvrage ? Aux ingénieurs, informaticiens, industriels, biologistes, économistes confrontés à des problèmes d'analyse de données, d'aide a la décision, de gestion des connaissances, de diagnostic ou de contrôle de systèmes. Aux étudiants en mathématiques appliquées, algorithmique, économie, recherche opérationnelle, gestion de production, automatique.