share_book
Envoyer cet article par e-mail

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems)

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems)

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann Series in Data Management Systems)

  (Auteur),   (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Data Mining: Practical Machine Learning Tools and Techniques, Third Edition (The Morgan Kaufmann..."

Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material. * Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods* Performance improvement techniques that work by transforming the input or output* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface.

Détails sur le produit

  • Reliure : Paperback
  • 664  pages
  • Dimensions :  3.6cmx18.8cmx23.4cm
  • Poids : 1179.3g
  • Editeur :   Morgan Kaufmann Paru le
  • Collection : The Morgan Kaufmann Series in Data Management Systems
  • ISBN :  0123748569
  • EAN13 :  9780123748560
  • Classe Dewey :  006.3
  • Langue : Anglais

D'autres livres de Ian H. Witten

Web Dragons: Inside the Myths of Search Engine Technology (The Morgan Kaufmann Series in Multimedia Information and Systems)

A recent Forrester Research survey found more users had used a search engine in the last four weeks than had used email, making web search the Internet's new killer app. And while we know nothing about search engine technology of the particular flavor of engine we use, we nevertheless count on the a...

Voir tous les livres de Ian H. Witten

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material. * Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods* Performance improvement techniques that work by transforming the input or output* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface.