share_book
Envoyer cet article par e-mail

Mixed-Effects Models in S and S-PLUS (Statistics and Computing)

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Mixed-Effects Models in S and S-PLUS (Statistics and Computing)

Mixed-Effects Models in S and S-PLUS (Statistics and Computing)

  (Auteur),   (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

    Description de "Mixed-Effects Models in S and S-PLUS (Statistics and Computing)"

    This paperback edition is a reprint of the 2000 edition.This book provides an overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. A unified model-building strategy for both linear and nonlinear models is presented and applied to the analysis of over 20 real datasets from a wide variety of areas, including pharmacokinetics, agriculture, and manufacturing. A strong emphasis is placed on the use of graphical displays at the various phases of the model-building process, starting with exploratory plots of the data and concluding with diagnostic plots to assess the adequacy of a fitted model. Over 170 figures areincluded in the book.The NLME package for analyzing mixed-effects models in R and S-PLUS, developed by the authors, provides the underlying software for implementing the methods presented in the text, being described and illustrated in detail throughout the book.The balanced mix of real data examples, modeling software, and theory makes this book a useful reference for practitioners using mixed-effects models in their data analyses. It can also be used as a text for a one-semester graduate-level applied course in mixed-effects models. Researchers in statistical computing will also find this book appealing for its presentation of novel and efficient computational methods for fitting linear and nonlinear mixed-effects models.

    Détails sur le produit

    • Reliure : Paperback
    • 548  pages
    • Dimensions :  3.4cmx15.6cmx23.4cm
    • Poids : 762.0g
    • Editeur :   Springer Paru le
    • Collection : Statistics and Computing
    • ISBN :  1441903178
    • EAN13 :  9781441903174
    • Classe Dewey :  005.133
    • Langue : Anglais

    Commentaires sur cet article

    Personne n'a encore laissé de commentaire. Soyez le premier!

    Laisser un commentaire

    Rechercher des articles similaires par rayon

    Rechercher par thèmes associés

    This paperback edition is a reprint of the 2000 edition.This book provides an overview of the theory and application of linear and nonlinear mixed-effects models in the analysis of grouped data, such as longitudinal data, repeated measures, and multilevel data. A unified model-building strategy for both linear and nonlinear models is presented and applied to the analysis of over 20 real datasets from a wide variety of areas, including pharmacokinetics, agriculture, and manufacturing. A strong emphasis is placed on the use of graphical displays at the various phases of the model-building process, starting with exploratory plots of the data and concluding with diagnostic plots to assess the adequacy of a fitted model. Over 170 figures areincluded in the book.The NLME package for analyzing mixed-effects models in R and S-PLUS, developed by the authors, provides the underlying software for implementing the methods presented in the text, being described and illustrated in detail throughout the book.The balanced mix of real data examples, modeling software, and theory makes this book a useful reference for practitioners using mixed-effects models in their data analyses. It can also be used as a text for a one-semester graduate-level applied course in mixed-effects models. Researchers in statistical computing will also find this book appealing for its presentation of novel and efficient computational methods for fitting linear and nonlinear mixed-effects models.