share_book
Envoyer cet article par e-mail

Python Scripting for Computational Science (Texts in Computational Science and Engineering) (v. 3)

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Python Scripting for Computational Science (Texts in Computational Science and Engineering) (v. 3)

Python Scripting for Computational Science (Texts in Computational Science and Engineering) (v. 3)

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

    Description de "Python Scripting for Computational Science (Texts in Computational Science and Engineering) (v. 3)"

    The goal of this book is to teach computational scientists and engineers how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in the easy-to-learn, very high-level language Python. The focus is on examples and applications of relevance to computational science: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping programs with graphical user interfaces; making computational Web services; creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran; and building flexible object-oriented programming interfaces to existing C/C++ or Fortran libraries. In short, scripting with Python makes you much more productive, increases the reliability of your scientific work and lets you have more fun - under Unix, Windows and MacIntosh.

    Détails sur le produit

    • Reliure : Hardcover
    • 726  pages
    • Dimensions :  3.4cmx16.0cmx23.2cm
    • Poids : 1161.2g
    • Editeur :   Springer Paru le
    • Collection : Texts in Computational Science and Engineering
    • ISBN :  3540435085
    • EAN13 :  9783540435082
    • Langue : Anglais

    D'autres livres de Hans Petter Langtangen

    Python Scripting for Computational Science (Texts in Computational Science and Engineering)

    The goal of this book is to teach computational scientists and engineers how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in the easy-to-learn, very high-level language Python. The focus is on examples and applications of relevance to ...

    Python Scripting for Computational Science (Texts in Computational Science and Engineering)

    The goal of this book is to teach computational scientists and engineers how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in the easy-to-learn, very high-level language Python. The focus is on examples and applications of relevance to ...

    Voir tous les livres de Hans Petter Langtangen

    Commentaires sur cet article

    Personne n'a encore laissé de commentaire. Soyez le premier!

    Laisser un commentaire

    Rechercher des articles similaires par rayon

    Rechercher par thèmes associés

    The goal of this book is to teach computational scientists and engineers how to develop tailored, flexible, and efficient working environments built from small programs (scripts) written in the easy-to-learn, very high-level language Python. The focus is on examples and applications of relevance to computational science: gluing existing applications and tools, e.g. for automating simulation, data analysis, and visualization; steering simulations and computational experiments; equipping programs with graphical user interfaces; making computational Web services; creating interactive interfaces with a Maple/Matlab-like syntax to numerical applications in C/C++ or Fortran; and building flexible object-oriented programming interfaces to existing C/C++ or Fortran libraries. In short, scripting with Python makes you much more productive, increases the reliability of your scientific work and lets you have more fun - under Unix, Windows and MacIntosh.