share_book
Envoyer cet article par e-mail

Gödel

ou partager sur :

share_comment
Partager ce commentaire par e-mail

ou partager sur :

PRÊT A ACHETER?
(vous pouvez toujours annuler plus tard)


J'aime
Gödel

Gödel

  (Auteur)


Prix : Cet article n'a pas encore de prix  ask_price

Demande de cotation sur ""
Ce titre est nouveau dans notre fonds d'ouvrages et nous ne l'avons encore jamais vendu à ce jour.
Notre engagement: Vous obtenir le meilleur prix
Aussi nombreux que soient les titres que nous référençons, absolument rien n'est automatisé dans la fixation de nos prix; et plutôt que de convertir automatiquement le prix en euros et risquer de répercuter sur vous un prix artificiellement élevé, nous vous faisons un devis rapide après avoir vérifié les prix auprès de nos différents fournisseurs.
Cette étape de demande de cotation est rapide (généralement quelques heures) et vise à vous faire bénéficier en permanence du meilleur prix pour vos achats de livres.


Sur commande

Des articles qui pourraient aussi vous intéresser

Description de "Gödel"

Kurt Gödel (1906-1978), mathématicien, logicien et philosophe, est incontestablement l'un des plus grands esprits de notre temps. Ses réponses aux questions radicales posées par le XXe siècle au langage, aux mathématiques et à la pensée rationnelle ont modifié de façon décisive l'assise du savoir contemporain Existe-t-il une langue qui permette d'isoler les phrases vraies dans tout monde possible ? Pouvons-nous ou prouver ou réfuter chacune des phrases que nous pouvons y énoncer ? Ou bien, dans une langue donnée, existe-t-il des phrases indécidables ? Plus largement, existe-t-il des phrases absolument indécidables, qui, dans aucune langue plausible, ne seront ni prouvées ni réfutées ? Sommes-nous des machines ? Si nous pensons correctement, notre pensée doit pouvoir s'énoncer dans une langue univoque mais, en utilisant une langue définie, nous écrivons comme une machine. Existe-t-il des machines capables d'écrire tout ce que nous pouvons penser ? Existe-t-il des objets qui ne sont ni dans l'espace ni dans le temps et que nous ne pouvons percevoir qu'avec nos esprits ? Les nombres sont-ils de tels objets ? Les mathématiques apparaissent comme le modèle de l'activité rationnelle et l'arithmétique donne le modèle de la certitude mathématique. Mais pouvons-nous donner un fondemen à l'arithmétique élémentaire ? On présente ici les réponses de Gödel, en suivant son oeuvre logique et philosophique, depuis sa démonstration de la complétude sémantique du calcul des prédicats (1929) à sa réflexion sur le continu chez Cantor (1947), en passant par so théorème dit d'incomplétude (1931) - théorème qui a rendu Gödel fameux au-delà de son domaine et influencé jusqu'au psychanalyste Jacques Lacan

Détails sur le produit

  • Reliure : Broché
  • 190  pages
  • Dimensions :  1.6cmx13.4cmx20.2cm
  • Poids : 158.8g
  • Editeur :   Belles Lettres Paru le
  • Collection : Figures du savoir
  • ISBN :  2251760407
  • EAN13 :  9782251760407
  • Classe Dewey :  510.92
  • Langue : Français

D'autres livres de Pierre Cassou-Noguès

Mon zombie et moi : La philosophie comme fiction

Que et où suis-je ? Après avoir revisité un certain nombre de positions classiques sur la nature et le statut du sujet (celle de Descartes notamment) et de réponses possibles à la question de savoir ce que je suis (une personne ? une machine ?), cette enquête développe une théorie originale ...

Le bord de l'expérience. Essai de cosmologie

Le but est, dans une perspective spéculative, de décrire notre expérience. Décrire par exemple un après-midi dans un jardin : distinguer différents facteurs des êtres, des événements, une lumière singulière , analyser aussi le corps du sujet tel qu'il est ressenti, examiner la position m...

Voir tous les livres de Pierre Cassou-Noguès

Commentaires sur cet article

Personne n'a encore laissé de commentaire. Soyez le premier!

Laisser un commentaire

Rechercher des articles similaires par rayon

Rechercher par thèmes associés

Kurt Gödel (1906-1978), mathématicien, logicien et philosophe, est incontestablement l'un des plus grands esprits de notre temps. Ses réponses aux questions radicales posées par le XXe siècle au langage, aux mathématiques et à la pensée rationnelle ont modifié de façon décisive l'assise du savoir contemporain Existe-t-il une langue qui permette d'isoler les phrases vraies dans tout monde possible ? Pouvons-nous ou prouver ou réfuter chacune des phrases que nous pouvons y énoncer ? Ou bien, dans une langue donnée, existe-t-il des phrases indécidables ? Plus largement, existe-t-il des phrases absolument indécidables, qui, dans aucune langue plausible, ne seront ni prouvées ni réfutées ? Sommes-nous des machines ? Si nous pensons correctement, notre pensée doit pouvoir s'énoncer dans une langue univoque mais, en utilisant une langue définie, nous écrivons comme une machine. Existe-t-il des machines capables d'écrire tout ce que nous pouvons penser ? Existe-t-il des objets qui ne sont ni dans l'espace ni dans le temps et que nous ne pouvons percevoir qu'avec nos esprits ? Les nombres sont-ils de tels objets ? Les mathématiques apparaissent comme le modèle de l'activité rationnelle et l'arithmétique donne le modèle de la certitude mathématique. Mais pouvons-nous donner un fondemen à l'arithmétique élémentaire ? On présente ici les réponses de Gödel, en suivant son oeuvre logique et philosophique, depuis sa démonstration de la complétude sémantique du calcul des prédicats (1929) à sa réflexion sur le continu chez Cantor (1947), en passant par so théorème dit d'incomplétude (1931) - théorème qui a rendu Gödel fameux au-delà de son domaine et influencé jusqu'au psychanalyste Jacques Lacan